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Curie temperature and critical thickness of ferroelectric thin films
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The dynamic Ginzburg—Landau theory is applied to establish the critical conditions that control the
transition between the paraelectric and ferroelectric states. Analytic expressions of the
para-ferroelectric transition temperatures in a thin film under various electromechanical surface
conditions are derived via a linear stability analysis of the evolutionary trajectory of the system for
both first- and second-order transitions. Explicit expressions are then derived for the critical
thickness, below which the thin film is paraelectric for all temperatures. For first-order transitions,
the difference between the superheating and supercooling transition temperatures is found to be
insensitive to the film thickness and surface boundary conditions. From these expressions, the
relative importance on ferroelectricity in thin films due to applied mechanical constraints on the
transformation strain and the depolarizing effect of surface charges is discussed and compared with
experimental data. @005 American Institute of PhysidDOI: 10.1063/1.186151]7

I. INTRODUCTION nates from the depolarizing effect of the film surface, infor-
mation on the details of the competing mechanisms, their

Ferroelectricity is a collective phenomenon, the characieative importance, and their relations with various electro-

teristics of which depend on the combined effects of manyy e -hanical surface conditions are still needed. Except for the

factors, such as the ambient temperature, boundary Condéimplest cases, numerical calculations using either

tions, sample dimensions, misfit epitaxial stresses, etc. StU(FFrst—principIe§ or thermodynamic approacﬂess are the
ies of the effects of sample dimensions on the Curie temperg; in theoretical tools for explorations in this area. In the
ture and the critical thickness of thin films have been

latter case, characteristics of the para-ferroelectric transfor-
conducted for the last several decadésRecently, research P

o ation have often been obtained from the condition of phase
in this area has found renewed relevance due to the surge Q

. . . - . ; uilibrium at the transition point. This approach has been
technological interest in ultraminiaturized electronics,

ltrahiah-densit devi d technoloi .ﬁroven effective for continuousecond ordgrphase transi-
uitrahign-density memory devices, and nanotechnologies 1}y s where the order parameter is continuous and well de-

gengrrz]il. terisi ina th ¢ lectric t fined at the point of transition. However, the case is more
. naracteristics governing the para-lerroelectric ranSI'(:omplicated for discontinuoudirst orde) transitions, where
tions in a film have been investigated within the framework

. : o the order parameter is discontinuous and not well defined at
of both thermodynamic theory and first-principles calcula-

i H . di ies bet ) ttfl1e point of transition.
Ions. However, various discrepancies between experimenta Alternatively, phase transition may also be described in

measurements and theoretical calculations and among tqgrms of the time evolution of the order parameter as an

theoretical calculat|or!s themselves may be the r.e_sult Of Mireversible dynamical process governed by the evolution
complete understanding. As an example, the critical thick-

f PLTIO thin fil t : ture has b equation. The latter can be formulated using the Ginzburg—

?esst Od t :5@5 n Im‘fh? r:r)]om hempera urle _asl tﬁeg €5 andau functiondl expressed in terms of a set of control
I-I|mae at~o. r][m, within telp enomeno Oglca he ryéh%arameter@\}, including the ambient temperature, boundary

owever, recent experimental measurements  snow tonditions, surface characteristics, sample dimensions, misfit
stable polarlz_atlon orthggonal to t_he surface -cansex.|st dOWIapitaxial stresses, etc. Within the dynamical descripﬁ’on,
to_ a .4—nm—th|ck Iqa;j?szmconate titana@ZT) film.” First- the evolution of the system can be pictured as the trajectory
principles calculatiorfseven found that an orthogonally po- of a moving “particle” in the order-parameter space, starting
larized ferroelectric state can be maintained under shor '

S . . ) ; tfrom an initial point(i.e., the order parameter &t0) repre-
circuit electric boundary conditions, even for a film as thin as point( b ) rep

: . L S senting the initial state and ending towards a point represent-
1.2 nm{three unit C?”j; Despite extgnswe |nvest|gat|dn§ ing the final state(i.e., the order parameter at«). The
that have been ‘?‘?‘"‘ed .OUt on th‘.a size-dependent Curie t_e ajectory and the final state are functions®§, obtained by
perature aﬂd cr|_t|cal th|cknes_s, its natu_re and the physic olving the evolution equation. This operation, however, is
reason .Of. its _emstencg remain uncer_tgm. F(_)r exampk_a'_a(jenerally rather difficult because of the nonlinear nature of
though it is fairly plausible that the critical thickness origi- the probleml.o While the numerical approach has been fol-
lowed for focused problems involving a relatively small
40n leave from the State Key Laboratory of Optoelectronic Materials andnumber of control parameters, the comprehensive under-
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with a fixed order parametethat must be asymptotically electrostrictive coefficient. Accordingly, the free energy of a

stable!® In this regard, analytic techniques in nonlinear ferroelectric thin film is made up of mechanical and electri-

mathematics exist, with which the stability of the stationarycal components. The mechanical component contains the

states, i.e., stationary solutions of the Ginzburg—Landaelastic self energy due to the transformation strain and the

equation(GLE), can be determined without the explicit so- interaction energy between the applied stress and the trans-

lution of the system of nonlinear differential equati(?ﬁlsl. formation strain. For rigid substrates, the transformation

Without loss of generality, we focus on the paraelectric tostrain is fully constrained, and the elastic self energy is given

ferroelectric transformation for easy discussion. In this casehy F.=GQf [\ /P*dV, whereG=(C,,+C;,~2C7,/Cy,), C1q

the GLE has two stationary solutions, with order parameterandC,, being components of the elastic modulus of the film

corresponding to the two states. Suppose we start with aandV the volume of the film. We note that due to the free

initial state that is paraelectric. If the corresponding station-upper surface of the films, the componef of the transfor-

ary solution is asymptotically stable, the final state must remation strain does not contribute to the elastic energy. Fab-

main paraelectric, and no transition to the ferroelectric stateication processes often leave a residual stress distribution in

will occur. This is the case even if both the paraelectric andhe film due to the lattice mismatch, the epitaxial stress. Its

the ferroelectric states are asymptotically stable at the samiateraction with the transformation strain is given by

time. Thus, a necessary condition for the transition to occur

is that the stationary paraelectric solution is unstable. This F, =_J Jf gijggdv =_f fJ (O'XXSIX'FO'ny;y)dU

provides us with the means to determine the rangé\f v v

within which the paraelectric state is stable, and outside

which the paraelectric state may transform into the ferroelec- =-2 f f J oe'dv,

tric state, i.e., the phase diagram. The foregoing approach v

allows important characteristics of a ferroelectric thin film, .

such as the transition temperatures, critical thicknesses, d(\;\{hereoxx—cryy.— Ir-

main morphology, substrate nature, etc., to be related through The glectrlcal component of the free energy can be ex-
. - ! o P - pressed in terms of the order parame®eand the tempera-

the instabilities of the initial state, the linear nature of which

: : . ture using the Ginzburg—Landau functiohaf the bulk ma-
opens the system to many established analytic techniques. , . =
In the present paper, we follow the analytic approachte”al' Including the effects of the depolarization fiel

described in the foregoing to establish conditions of the sta=(0+0,Ea) and the surface effects, the Ginzburg-Landau free

bility of the paraelectric versus ferroelectric phases in a thirfN€rdy in the neighborhood of the transition point can be
film. The polarizing/depolarizing effects due to the presenc&*Pressed as

of the film surface, namely, the surface lattice relaxation, the A B C D/ oP)\?
restraint of the transformation strain, the electromechanical Fi= J J f {E(T—Tco)Per ZP4+ EP6+ E(E)
surface conditions involving the epitaxial stress, and the in- v

duced surface charges, are taken into account. Expressions 1 Ds&!
for the para-ferroelectric transition temperatures as a func- - EEdP]dU +ff 2
tion of film thickness and the corresponding critical thick- s
ness are derived, and the complex relation of the criticafvhereA, B, C, andD are the expansion coefficients of the
thickness with the various parameters discussed. Both firStorresponding bulk material under the zero-stress sStaiés

P2dxdy,

order and second-order transitions are considered. the cooling phase-transition temperature of the bulk crystal,
S represents the upper and lower surface planes that cover
Il. THE EVOLUTION EQUATION AND STABILITY OF the entire surface of the film, and is the extrapolation

THE STATIONARY STATES length that measures the effect of lattice relaxation on the

We consider a thin film of ferroelectric material of di- surface or the change of the polarization due to the surface
mensions ofe X % X h, h being the film thickness. The origin €ffect™*? The total Ginzburg-Landau free energy of the cell
of the coordinate system is at the center of the cell. Wecan be written as a sum of the electrical and mechanical
assume thaP, the single polarization component normal to components,

the surface of the film, is the order parameter to describe the A B+4GQ I
phase transition. In general, the transition between the cubic F =f f f {—(T— T P?+ ———P*+ —p®
and tetragonal phases involves three polarization compo- vi2 4 6
nents related through a system of three coupled nonlinear D/oP\2 1
differential equations, which have to be analyzed together. + E(E) - EEdP_ 2Ur8T] dv
Nevertheless, this is beyond the scope of the present paper.
Noting that a para-ferroelectric transformation is caused D&t )
by a transformation between a central symmetric and a non- * f L 2 P*dxdy. @)

central symmetric lattice structure, the transition is always

accompanied by a transformation strain. When the ferroeleckwo separate cases may be considered: the more common
tric state under consideration has a tetragonal lattice strugs>0 case, corresponding to a reduction of self-polarization
ture, the transformation strain in the plane of the film can beon the surface, and the raréx 0 case, corresponding to an
expressed in the form crfT:slxzs;y:QPz, whereQ is the  enhancement. We note that in genefiak not an absolute
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constant. Furthermore, effects of the epitaxial stress and thide corresponding stationary solution of Ef). The dynam-
surface lattice relaxation may contribute to or against thecs of A follows from Eq. (5) by retaining only the terms
transformation. linear in A, which are given by
Another important surface effect is the depolarization A
field that comes from the polarization-induced surface— =M| - A(T-Ty)A +4Qo,A - —
charges, which is governed by the electric boundary condi-7t €
tions. In this paper, we consider two cas@s:the ferroelec- h/2
tric film is sandwiched between two metallic electrodes in - 3(B+4GQ?)P?A - 5CP*A + D—+ f }
short-circuit conditions ancb) the ferroelectric film is sand- h/2
wiched between two dielectric substrates. (7)
Although perfect screening is not achieved even under
the short-circuit condition, partial compensation by the elec-1 "€ boundary condition is the same as B, only with P
trodes still reduces the depolarization field, due to the varial€Placed byA. For a symmetric configuration, the condition
tion of the spontaneous polarization in thdirection. In this dA/dz=0 atz=0 must also hold.

case, the relation between the depolarization figjénd the _ This equation governs the stability of the stationary so-
spontaneous polarizatidd is given by? lution of Eq.(5). It is a Imgg_r equation oA. I'_[s analysis in
the context of phase stabilities, without having to resort to a

£ = _}(P_ }fhlz sz) ) solution of the nonlinear equation&q. (1) or (5)], is our

d- ' main aim. It is obvious from Eq.7) that the equation gov-
erning A in the paraelectric and ferroelectric states are dif-
wheree is the dielectric constant of the film, and the secondferent in general, from which it follows that the stability
term on the right-hand side is due to the compensatingonditions for the two branches are also different. However,
charges on the upper and lower metallic electrodes. For dias we shall see, for second-order transitidhs continuous
electric substrates, there are no compensation charges, aad the transition point. The ferroelectric and paraelectric

€ ~hi2

the corresponding relation is given kgee the Appendix branches are both unstable when crossing this point from
= opposite directions and transform into one another. The Cu-
Eqg=——. 3 rie temperature and the critical thickness are then indepen-

&

dent of the initial state and are thus well defined.
We may write down a general expression that encompasses FOr first-order transitions, on the other haffs discon-
both contact conditions, tinuous across the transition temperature. The paraelectric
o (P= 0) and th.e.ferroelectncﬁP;& O)_branches_ obey dlﬁerent
Ey= (P— _J sz) 4) stability conditions due to the difference in the governing
h/2 ' equations ofA in Eq. (7). Suppose the paraelectric branch is
dynamically stable for temperatures down Tg@ and the
where ¢ takes on the value of 0 or 1 depending on theferroelectric brancHP#0) is dynamically stable for tem-
contact condition as discussed in the foregoing. peratures up tdl., then the two critical temperatures are
Using Eqgs.(1) and(4), the time evolution of the system |ikely to be unequal. Indeed, depending on the direction of
is governed by the time-dependent Ginzburg-Landayhe transformation between the two stat€s,is called the
equation”® supercooling transition temperature ahng, the Curie tem-

9P SF p perature(superheating transition temperature
—=-M—==M| -A(T-TyP+4Qo,P-—
ot 5P ( ) Qo e
h2 [ll. STABILITY OF THE PARAELECTRIC STATE AND
— (B+4GQ)P3 - CP5 + D 22 L2 pd2:| (5)  CRITICAL CHARACTERISTICS
ehJ 2 ’

In view of its simplicity, the case in which the initial
whereM is the kinetic coefficient related to the domain-wall state is paraelectric, i.eR=0, is considered first. Transition
mobility. The surface term in Eq.l) yields the boundary from the ferroelectric statéP # 0) will be considered in Sec.

conditions, IV, where it will be shown that the two transition tempera-
JP p h tures are rela;ed by a constant shift. We _d_o not differ_entiat_e
—=x— for z=+-. (6) between the first- and second-order transitions, to which this
9z 9 2 analysis applies equally. In the following, the cases0 and

Equation(5) has a trivial stationary solutio=0, rep-  9<0 are separately considered.
resenting the paraelectric state. As discussed in the Introduc-
tion, to be able to transform from the initial paraelectric
(P=0) state to the ferroelectrid® # 0) state, the paraelectric
stationary state must become unstable. The same also applies In most ferroelectric materials, lattice relaxation weak-
to the reverse transformation. ens the polarization on the surface, adt-0. Using the

The dynamic stability of the stationary states can bemethod of separation of variables and taking into account
come probed by applying an infinitesimal perturbatibio  dA/dz=0, at z=0, Eq. (7) can be separated into time-

A. Reduced surface polarization;: The >0 case
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dependent and time-independent parts, connected by the ei4Qo,) >1 must be satisfied, putting a necessary condition

genvalue. FolP=0, the solution can be written as on the possibility of the cooling transition from the paraelec-
Adzt) =e*g, (2) = Age*[coska) + R, (g Mesae
where . is the eigenvalue ang, () the corresponding
eigenfunction of Eq(7), 1. Asymptotic solutions for thin films — (i.e., h<8)
we=M[~A(T - Tgy) +4Qa, — £+~ DK, 9 Whenhk.< 1, Eq.(12) can be solved via a series expan-
andR a constant given by sion of the left-hand side, yielding
2Mé : (kh) 2 279G
R=- sinl —]. (10 ke =~ , (14)
hKM[400, ~ AT -To]-wg M 2 ) 10 h(5+h/6)
The P=0 solution is unstable whem,>0, because in this from which T is given by
case,A increases exponentially with time. It can be seen 4 1 D(2-4G
from Eq.(9) that when the temperatufeis sufficiently high, To~Te+ (?AU' v A:1 5 d;/g) , (153
w:<0, and the paraelectric state is stable. Wheis suffi- & (6+h/6)
ciently low, w turns positive and the paraelectric state is NoywhereG, is a function ofT,,
longer stable, since any small perturbatidrwill grow ex-
ponentially beyond all bounds. The critical conditiap=0, G.= 2 (15h)
yields, in this case, the supercooling transition temperature ¢ e[4Qo, - AT, - Tl
Te of the film, Whenh< 6, the conditionkh<1 is satisfied from Eq.
4Qo; 1 D 14). Thus,T. in Eg. (158 can be solved explicitly to give
T.=Tg+ Ar_A__ng’ ap cin Eq. (153 plicitly to g
& 4Qo, 1 2D

T+ - = -—"" for ¢=0, (163

where the first term on the right-hand side is related to thJCN A As ARh(5+h/6)
bulk ferroelectric property, the second term to the misfit of

the substrate, the third term to the induced surface charge@‘,nd

and the fourth term to the lattice relaxation on the surface. 4Qo, 2D
While the last two terms act against the transformation bylc = Tco + A AR(5+ 1/6)
lowering the transition temperature, the second term can act
either way, depending on the direction of the misfit, i.e., the  Thus, independent of the contact condition, the critical
sign of o,. Here k; depends on the film thickneds the temperature decreases monotonically as the film thickhess
extrapolating lengths, and the electric boundary condition decreases. The corresponding CCT can be obtained by put-

through ¢, as the smallest nonzero root of the equation,  ting T.=0 in Egs.(168 and(16h), and solving forh,

for ¢=1. (16b)

h 2 2D
co(<k°—) =k o+ ¢ : (12)  he= - for
2 8kch[‘"QO'r - AT, - Tco)] 5[(4Q0'r +ATp) —¢ ]
The general relation betwedn and the film thicknesk can ¢ =0 (dielectric contacts (17a
be obtained by solving Eqg$11l) and (12) simultaneously.
Equation(12) is a transcendental equation that can easily be 2D
solved numerically in general. Furthermore, as we shalflec = 8(4Qa, + AT,) for
show in the following, simple analytic approximations can o
also be derived in many important cases. The cooling critical ¢ =1 (short-circuit electrodes (17b)
thickness(CCT) of the film h, below which ferroelectric Equations(178 and (17b) show that the CCT decreases

transition by cooling is not possible, can be derived by putyyith decreasing surface relaxatiéire., increasing extrapola-
ting Tc=0in Eq. (1%) , yielding the foIIowgg_ expression for o ength 8), for both contact conditions. In addition, the
the correspondingg, which we denote b, in terms of the  ghort_circuit boundaries, with a smaller depolarization field,
material properties of the film: gives a lower CCT than the dielectric boundaries. Further-

, 1 1 more, h,; may become negative i, is negative and large.

Kee= 5<ATco+ 4Qo; - ;) (13)  Both results can be predicted from physical considerations.

h.. can then be obtained by solving foras the smallest
positive root of Eq.(12) corresponding toT.=0, with k.
given by Eq.(13). Sinceh, varies inversely withk.. accord-
ing to Eqg.(12), Eq. (13) then requires that the CCT for these
materials increase with decreasing bulk transition tempera- In the neighborhood df.h= , the left-hand side of Eqg.
ture and substrate constraint, and with increasing depolariz412) can be approximated by da&j~(7/2)—x. This ap-
tion field. We further note that, fok.. to be real,e(AT,;  proximation yields

2. Asymptotic solutions for thick films (i.e., h>o)
with ¢G.<1
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T 2¢G,
~ - . 18
ke h+26 wh (18)

Since the conditionk:h= 7 is satisfied whenh> ¢4 and
$G.<1, k; in Eq. (18) is a solution of Eq.(12) for thick

films with a small depolarization field. In this case, an ex-

plicit relation of T, can be obtained from Ed11), which,
taking into accounv<h and $G.<1, can be solved for,
4Qu, D

to give
2
A A(h) '

The behaviors of . in Egs.(163, (16b), and(19) are similar.
As the film thicknessh is reduced, its critical temperature
decreases monotonically.

The corresponding CCT is given by

/ 7D
hcc =~ A L AT
(4Qa, + ATy)

It is interesting to note that, even for thick films, the con-

D

ko

Te=Tgo+ (19

(20)

J. Appl. Phys. 97, 084109 (2005)

The major difference between the>0 and5<0 cases
lies in the sign for the polarization gradient in the two cases.
In the §<0 case, the enhanced surface polarization, as rep-
resented by the positive gradient term, together with the mis-
fit interaction of the transformation straiif o, >0), favors
the ferroelectric state over the paraelectric state. From Eq.
(24), it is clear that unless the depolarization field caused by
the surface-induced chargéthe £ term) is sufficiently
large, T, cannot be zero as long as a solutiorkoin Eq. (25)
exists, independent of the film thickness.

The foregoing results show that, if the polarization is
enhanced on the surface, .60, a positive value of the
CCT in ferroelectric materials need not exist, and in such a
case, the transition to the ferroelectric state by cooling is
always possible. In this case, the existence of the CCT de-
pends on whether the depolarization field due to the surface-
induced charges is sufficiently large. For the more common
6>0 case, on the other hand, this condition does not have to
hold for the CCT to exist.

straint of the substrate and the surface relaxation cannot be

neglected as long as there is a surface in the sample. Furthet- Asymptotic solutions for thin films, i.e., h

more, h.. may become imaginary if, is negative and suffi-
ciently large.

B. Enhanced surface polarization: The <0 case

In rare cases, polarization may be enhanced, instead
reduced, on the surface of some materials. In this cése,
<0, and, similar to thes>0 case, discussed in the forego-
ing, the solution of Eq(7) can be written as

A=eo, (2). (21)
The eigenvaluew, is given by
1
w.=M|-A(T-T) +4chr——+Dk2]. (22)
€

The eigenfunction is given bywc(z)=Ao[cosr(kz)+R], with
2M ¢ _ h<kh>

= - nh —|. (23
hKM[4Q0, ~ AT Tl - g S 2 )+ 23

The cooling critical temperaturg&, is obtained by putting
w.=0 in Eq.(22),

4Qu;
A

1 D,
_+_
Ase Akc’

Tc = TcO + - (24)

wherek. is related to the film thickness through the boundaryt
conditions in(6), as the largest root, corresponding to the

highestT,, of the equation
h
keh cot!‘(%) =khy+

where we have defineg=-46>0. Similar to the6> 0 case,

2¢
8[“'Q‘Tr - A(Tc - TCO)] ,

(25)

h andk; can be shown to vary inversely with each other in

general. This behavior in E@24) leads to a value of that
decreases as the film thickndssncreases, i.e., opposite to

the 6>0 case. Physically, the reason for this behavior is

<y

Similar to the case 06> 0, analytic approximations of
the cooling transition temperature and the CCT can also be
derived.

Whenhk,<1, expanding the left-hand side of E@5)
ct)? second order ik, the solution can be written as

2- 4G
2 c
=~ 26
" h(y-h/6) (26)
so that
4Qo; 1  D(2-¢G)
To~Te+ -—+ : 27
9T A Ae Ah(y-hiB) 27

The validity of solution(26) is satisfied whem< . An ex-
plicit solution of T, from Eq. (27) is given by

4Qo, 1 2D
T ~Tg+ B S -0, (28
=Tt T T e T ARGy —te) O ¢ (289
and

4 2D
T.~ T+ Qar for ¢=1. (28b)

+
A Ah(y-hi6)

These expressions show explicitly that, independent of the
contact condition, the critical temperature increases mono-
tonically as the film thickneds decreases. This is opposite to
he §>0 case. At the same timd, for ¢=1 is positive
definite for any film thicknes®i < y/6. In such a case, the
CCT does not exist.

From Eg. (283, when the depolarization field is suffi-
ciently large, i.e.(AT+4Qo,) <&™%, a solution ofh,, for
T.=0 exists whenp=0. This is given by

2D
e = (4Qo; + AT)]
¢ =0 (dielectric boundaries

e = for

(29)

clear, as caused by the enhanced polarization on the surfadgé.y/h..>1/6.
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It can be seen from the foregoing that the behavidnef by Py=P"(0). This approximation is also valid when is a
depends strongly on the boundary contact conditions in thislowly varying function. Thus, we may write

case 0fd<0. wn=A(T =T, +3(B+4GQR)PZ + 5CP}

— 2 2 2 2
2. Asymptotic solutions for thick films (h=>y) =(Po—pD(Po—p2), (34)
with G <1 wherep? andp3 are the two roots of E¢(34) for w,=0. We

When the solution lies in the neighborhoodlgh> =,  note thatp? and p5 can be both real or are complex conju-
the left-hand side of Eq(25) can be approximated by gates. In the simplest case that they are real, the stability

coth(x) = 1. This approximation yields condition of the ferroelectric state is satisfiedP§ lies be-
5 tweenp? and p2. In the following, we will consider several
1 (f)G o 1 2
kﬁ ~ (=== (30) specific cases.
y h Let us first consider the case in whi€>0. We can

that satisfiesk.h> 7 when h>y and ¢G,<1. An explicit  Write down the solutions as

expression off, can be derived by substituting into EQ4), 5 3(4GQ?*+B) +d ) 3(4GQ+B) -d
ToT Qo 1 D for =0 andg=1 P1= - 10C v P2= - 10C :
c— 'c0 A As A,yz’ - B (35)

(31) Hered? is the discriminant of the quadratic in E@4), given
In both casesT. is independent oh, and the critical thick- by
ness does not exist. d?=9(4GQ? + B)2 - 20AC(T - Ty). (36)

At this point, we note that the analytic results for ]

second-order transitioffs, obtained using the static NOte that the rootg, andp, are both functions of tempera-
Ginzburg-Landau equation, are consistent with the preseriré throughd. Let us define a temperatufig, by
results. Our results are also applicable to first-order transi- 9(4GQ? + B)?
tions from the paraelectric branch to the ferroelectric branch,  Ten=Tc+ T ;e (37)
yielding, instead of the Curie temperature, the stability limit
of the paraelectric phase during cooling, i.e., the supercoolFor temperatures abovie;,, d?<0 andwy, has the same sign
ing transition temperature. To obtain the Curie temperatur@sA(T—T,), i.e., positive definite. Thus, the ferroelectric sys-
and the critical thickness, in the following, we will analyze tem will be unstable at temperatures abdyg
the stability of the ferroelectric branch and investigate the  In the temperature range.<T<Ty, the productpipg,
stability limit of the ferroelectric phase on heating, i.e., tran-from Eq. (34), is equal toA(T—-T.)/5C, which is positive
sitions from the ferroelectric branch to the paraelectricdefinite(C>0). In this temperature regime, it can be shown

branch. that d>>0, and the roots in Eq35) are real and have the
same sign. In addition, if@Q?+B<0, it can be seen from

IV. STABILITY OF THE FERROELECTRIC STATE Eqg. (35) that both roots are pos!tlve. In t.hIS case, bp{mnd

AND TRANSITION CHARACTERISTICS p, are real, and the ferroelectric state is stable wRgties

betweenp,; and p,. We note that aff=T, d,=0 andp,

In the ferroelectric state, the stationary polarization field=p, so thatP, is uniquely defined. AfT=T,, the smaller
P(2) is nonzero, and the corresponding stability equationsolution becomes zero. Within this temperature regime,
[Eq. (7)] is no longer the same as that in the paraelectriGyhich is above the cooling para-ferroelectric transition tem-
state. Treating thé@-dependent terms as a perturbation andperatureT,, the ferroelectric state is still stable, afigh can
expanding in terms of the complete orthonormal set of eigenpe identified as the superheating transition temperature. This
functions of the unperturbed equation, K@) can be solved  difference between the heating-up and cooling-down behav-
within the first-order perturbation approximation. The eigen-jors is well known for first-order phase transformations near
value wy, in this case is given by the critical point, and is caused by the restraint on the real-

wn = A(T = Ty) + 3(B + 4GQ)(P?) + 5C(PY, (32) i;a_ti(_)n of the transformation strain, in the present case by the

rigidity of the substrate through the4? term.
where T is the supercooling temperature obtained in the |y the case when@Q?+B>0, bothp? and p2 are nega-
foregoing section, andP") is the expectation value d®"  tive, andP, has no real solution in this temperature regime.

given by In this case, the ferroelectric state does not exist for tempera-
h/2 tures aboveT,, and the ferroelectric state cannot be super-
f P”(z)goic(z)dz heated beyond the cooling transition temperafiyréVe note
(P = ‘h/2h/2 , (33) that whenT=T,, the largest solution is zero.
J 2 (1d At temperatures belov,, the product of the two roots is
2 ‘ch(z) z negative, and thus only one of them, the largest one, can be

positive. For the ferroelectric state to be stali*g,must be
where Py, is the eigenfunction of the unperturbed state.smaller than the only real root. The system here then behaves
Since bothP and ¢ peak atz=0, we may approximatéP") as a typical second-order system.
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T " T " T T T T T " TABLE |. Phenomenological parameters of PbJiénd BaTiQ (in cgs
0.5 - ] unstable region| unit).
- stable region
~ _ h=100 nm
= S— h=50 nm Material Teo (K) A 105 D 10% 8 (nm) e
o S s 2 s h=20 nm
= , ] PbTiO, 763 8.37 3 5 21¢
0 o3l 7t i BaTiO, 397 7.4 0.5 0.5 200
S “Reference 6.
= PReference 7.
ﬁ 0.21 b ‘Reference 15.
= YReference 16.
@©
S 011 g
o : The case of materials wit@=0 can also be easily ana-
0.0 UL L — lyzed using Eq(34), which becomes
550 600 650 700 750 800 850
wn =A(T-T) + 3(B+4GQP)P3. (38)
Temperature T (K) . L -
If B+4GQ?>0, w, is positive definite forT>T,, and the
05 . ———————r : system is unstable. FAr< T, the system is stable as long as
] unstable region | P3<A(T.-T)/3(4GQ+B). This system behaves like a
c 04l 222 siabve region | second-order system. For the rare case in wiBeGQ?
) S e h=50 nm <0, the ferroelectric state is stable in the temperature range
=~ R h=20 nm T<T.—3(B+4GQ)/A, which is above the supercooling
o 031 P T transition temperaturd,. This system thus behaves like a
.g *. N first-order system, with a superheating temperaflye=T.
w© 024 / / 2 . -3(B+4GQ)/A. The caseC< 0 rarely happens and will not
o 5 ‘ be considered. At any rate, the foregoing analysis can be
% 0.1 , 4 repeated easily for this case also.
o Analytic expressions of the Curie temperature and the
0.0 . corresponding critical thickness for first-order transitions can
600 700 800 900 1000 thus be obtained by replacinglTy,, with T,+9(B
5 . ' ) )
Temperature T (K) +4G@Q)?/20AC in the respective equations in Sec. Ill.

FIG. 1. (a) The stable area of the ferroelectric to paraelectric transition of aV' DISCUSSIONS

freestanding PbTigfilm. (b) The stable area of the ferroelectric to paraelec- . . . g
tric transition of a PbTIQilm on a STiQ, substrate. The following discussions refer to the specific examples

of PbTiO; and BaTiQ. Straightly speaking, the foregoing
results only apply to uniaxial ferroelectrics and not so much
Thus, in the cas€ >0, the order of para-ferroelectric to cubic perovskites such as PbEi@nd BaTiQ. However,
transition in a thin film depends not on the signBbut on  even for these perovskite ferroelectric thin films, the polar-
the sign ofB+4GQ”. Since 4@’ is positive, a film made of ization field is often found to be perpendicular to the surface
a first-order bulk material may exhibit a second-order transidue to the mechanical constraint of the substtate.
tion behavior if the constraint due to the substrate is suffi-  The material parameters for the free energy expressions
ciently large. of.PbTiO3 and BaTiQ, fi_Im are listed in Table I. The critigal
Plotted in Figs. la) and Xb) as a function of tempera- thickness of the thin fllm af.=0 can be calcu!ated using
ture for various film thicknesses are the regions of stabilityEdS- (11) and(12), following the usual assumption of a re-
of Py for PbTiO; according to the conditionp, <Py<p; uced polan_zatlon f'eld_ on the s_urfa_ce, 1.8 0. )
from Egs. (35 and (36). Figure 1a) shows the case of a we cons_lder a BaTigfilm, epltz_mally grown on a th!Ck
freestanding film, whereas Fig(t) shows the film on a SrRuG,/SrTiO; substrate. In Sl units, the elastic compliance

. ) ) : components of a BaTip film are® s;;=s,,=533=8.3
SrTiO; substrate. It is obvious that the constraint of the sub->< 10712 §,,=5,5=5,3=—2.7% 10°22 andQ=-0.043. If stress

, , » 'Selaxation during fabrication is neglected, the misfit strain
duces the Curie temperature, and changes the first-order trafan reach 2%, corresponding to a misfit compressive stress
sition of the ferroelectric material into a second-order one. ¢ 3 57 GPa. From the second term of Eq), this large

It is interesting that the difference between the super¢ompressive misfit stress may raise the Curie temperature by
heating and supercooling transition temperatures is insensiy unrealistic value of 900°. Experimentally, Yanatall’
tive to the film thiCkneS$I. This behaVior is also seen in the measured a Curie temperature of 350 °C. Compared with an
numerical solution of the static Ginzburg-Landau equationnherent Curie temperature of BaTj®f 130 °C, one may
for the first-order phase transition of a freestanding ferroelecestimate that the Curie temperature is raised only by 220 °C,
tric film.*® These results show that the two temperaturescorresponding to a misfit stress and strain to be 852 MPa and
plotted as a function of film thickness, are practically paral-0.00477, respectively. In the first-principles calculation of
lel. Junquera and Ghosézhe critical thickness of BaTiQunder
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3-0 T T T T T T T T T T
% Theoretical prediction of present paper 1000
’g 25\ % Approximation, Eq. (20) J
£ x 800
3 201 \«x 4
2 A o 600
36 1.5+ 5 E <
= o
- 1.0 = 400
8 ’ « Tttt Prediction in Ref.13
= 200 } Prediction of present paper i
5 0.5 % X Approximation, Egs. (16b) and (19)
L ] Experimental data’
0.0 I I L L L 1 I b il 0 1
o 1 2 3 4 5§ 6 7 8 9 10 1 10 100

. Film Thickness h (nm)
Extrapolation length § (nm)

FIG. 3. The Curie temperature vs thicknéss
FIG. 2. The critical thickness vs the extrapolation length for BaJikthere

‘+" describes the approximation,(nm)=2.2/5. account, it is not unreasonable to speculate that the surface
polarization calculated in Ref. 2, may be overestimated. A

L . roper treatment of the relaxation may produce a positive
short-circuit boundary conditions was found to have a valud °P y P b

H 14 .
of about 2.4 nm. The corresponding extrapolating length caﬁ/alue ofé. Indeed, Streiffeet al, *who measured the Curie

. . . . temperatures as a function of film thickness up to 50 nm of
be estimated bY pumencally solving Eq1) a_nd (12). st epitaxial films of PbTiQ, grown on a SrTiQ@ (001) substrate
multaneously, giving a value of=~0.5 nm, which satisfies

i.e., =0), found that the Curie temperature decreased with
6<h. We note that the small extrapolating length physically(I ¢=0), fou | perair Sed Wi

hat th | oh h ¢ b decreasing film thickness, indicating a reduced polarization
means that the tetrag.ona phase on the surtace beComes gy e surface corresponding to a positive value.of
most central symmetric due to lattice relaxation, resulting in

| on in th larizati h ; h Assuming the film is fully strained epitaxially, with a
a large reduction in the polarization on the surface. The deéompressive epitaxial strain ®§<x=8yy=l-2%,14 and elastic

polar?zing eﬁgct SO arise; does not come from the usual deéompliance components af;=8.3X 1072 N/m? and sy,
polarization field due to induced electric charges on the sur=_, cw 15712 N/m2.28 the epitaxial stresses can be calcu-

face. Indeed, Eq(20) shows explicitly that this is the case. |teq to bea, = 0= 0,y =—2.4293< 10° N/m2. Substituting
Thus, even W?th zero depplarizing charges, i.e., both the'thirqlne epitaxial stresses into E¢L1) with the parameters in
term on the right-hand side of E(L1) and the last term in - Tapje | and using the electrostrictive coefficiapt~0.026
Eq. (12) vanish, a solution of for these equations may still (i s unit),*® the Curie temperature is found to increase by
exist, as can be seen explicitly in E4s7a and(17h), which  apoyt 335 K. The transition temperature is a function of film
is independent of the depolarization field. This conclusion ishjcknesgin nanometers as given by Eqs(11) and(12) (for
independent of the contact conditions. _ ¢=0). The results are shown in Fig. 3, together with the
From the numerical solution of E13), the relation  eyperimental points of Streiffeet al* The transition tem-
between the critical thickness and the extrapolation length OE)erature can be calculated analytically using E@6b) and

BaTiOs/SrRUQ/SrTiO; is shown in Fig. 2. The decrease of (20) for large and small values ¢ respectively. For PbTiQ
the extrapolation lengtlé decreases the surface polarizationthese equations can be put into the simple forfis

and causes the critical thickness to increase. The correspond4 0413600042 for h>20 nm, andT,=1041-1440t for
ing analytic approximations for the cases &-0, andh;  h<20 nm,h being in units of nanometer, using the param-
<o orh.>éare derived in Eqs17) and(21), respectively.  eters in Table I. It can be seen that this simple relationship
Using values from Table I, these equations glignm)  describes the experimental data very well. Plotted together in
=3.5-2 and h(nm)=2.2/5, respectively. Despite their the dotted line is the theoretical prediction used for compari-
simple forms, these expressions give a very good descriptiogon by Streifferet al!* The difference between the two the-
of the system, as shown by comparing with the numericabretical results in the small film thickness regime is obvious.
solution in Fig. 2. We note that in the foregoing analysis the elastic strain en-
In the first-principles calculations of Ghosez and Rabe ergy, being proportional te3~ P*, is assumed negligible in
for (001) PbTiOsfilms, a stable nonferroelectric ground state comparison with the interaction energy between the epitaxial
cannot be observed for films with thicknesses down tostress and the transformation strain. The calculated Curie
~1.2 nm(three unit celly, suggesting the possibility that the temperature versus thickness for PbJtBin films under the
critical thickness may not exist in this case. Ghosez andwo contact conditions is shown in Fig. 4. For films with the
Rabe’s work also showed that the calculated polarizationsame thickness, those on the dielectric substrates have Curie
was enhanced on the surface, implying a valuéaf0. Our  temperatures slightly lower than on short-circuit electrodes
analysis in Sec. lll B shows that in such cases, a criticallue to the screened depolarization effect in the latter case.
thickness indeed may not exist for the short-circuit boundary
conditions. Furthermore, in such a case, the Curie tempera\t/-" SUMMARY AND CONCLUSIONS
ture should increase with decreasing thickness. Since surface A thermodynamic model has been developed to describe
stress relaxation in this calculation has not been taken intthe critical parameters in the ferroelectric transformation in
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1000 -

800

& 600
ﬁ 400, APPENDIX: DEPOLARIZATION FIELD
IN THE FERROELECTRIC THIN FILM
200 —_ short-circuit electrodes BETWEEN TWO DIELECTRIC SUBSTRATES
~—- dielectric substrates The thin film is assumed to be infinite along thkandy
0l . . : directions with a thicknesls. Consider a unit positive charge
1 5 10 25 50 acting at(z’,r’,0') in the film, the electric potential at
Film Thickness h (nm) (Z,R, 6) in the film has been derived by Wang and Woo as
_ _ _ follows:*®
FIG. 4. The Curie temperature vs thickness under different boundary
conditions. 1 1
G(X,X') =

4 Z-7)2+¢? 1/2
thin films, such as the Curie temperature and critical thick- e [( ) ]

ness. By analyzing the conditions of dynamic instability of 1 < C,
the time-dependent Ginzburg-Landau equation, we obtain [(z, + 2nh)?+r2]?2
analytic expressions for both first-order and second-order

+
Amag =

transitions for the relationship among the epitaxial stresses, C, C3

the surface-charge-induced depolarization, the electrome- " [(z,+ 2nh)? +r2]*2 * [(zg+ 2nh)? +r2]*2
chanical contact conditions, the film thickness, and the Curie

temperature. From this relation, analytic expressions for the + Cq }Bn (A1)
critical thickness are also derived. Despite the simple form of [(zg+2nh)2+ 22 )7

these expressions, they give very good description of the . .
system, as shown by comparing with the numerical solulV1€"€:@0: @2, anda are the dielectric constant of the upper
and lower substrates and of the film, respectively,

tions.
Our analysis yields the following conclusions: (1 - alag)(ag/a - aglay)
(1) Four factors influence the dependence of the para- —  (1+alag)(l+alay)
ferroelectric transition on film thickness in thin films)
surface lattice relaxatiorib) induced surface chargé) _(1-aga)

interaction of epitaxial stress with transformation strain, €2~ (1+dlag)’
and (d) restraint of the transformation strain.
(2) The restraint of the transformation strain due to the ri-

gidity of the substrate weakens the polarization of the ¢, =- (1~ aga)(1 -~ alay)

ferroelectric state, reduces the Curie temperature, and (1+alag)(1 +alay)
may even cause a thin film made of first-order ferroelec-
tric material to undergo a second-order transition. _ (af/ay = ag/a)

(3) Enhanced or reduced polarization on the surface due to Ca=

the effects of the lattice relaxation and the epitaxial
stress plays an important role in determining the Curie (1-alag)(1 - alay)
temperature and the critical thickness. In the case where B= (1+alag)(L+alay)’
surface polarization is enhanced, the Curie temperature aldo ardz
is increased and the critical thickness reduced, as thgng
film thickness decreases. It opposes the effect of the de-
polarization field due to the induced surface charges, the z=2h+Z-7,
sole presence of which is not sufficient to guarantee the
existence of a positive value of the critical thickness. In z,=72+7,
the reduced case, the opposite is true.

(4) For first-order transitions, the difference between the su- 7z =2h-z+7,
perheating and supercooling transition temperatures is
Lound to be msg_nsmve to the film thickness and surface 2,=2h—(Z+7'). (A3)

oundary conditions.

1+day)

(A2)

r=[R%+(r")?>-2Rr’ cog6- #')]*2. (A4)

From Eqg.(Al), one can derive the electric potential at
This project was supported by grants from the ResearckZ,R, 6) in the film if a unit dipole along the axis acts at
Grants Council of the Hong Kong Special Administrative (z',r’, ") in the film as
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